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Abstract 

This paper introduces the mixture general diagnostic model (MGDM), an extension of the 

general diagnostic model (GDM). The MGDM extension allows one to estimate diagnostic 

models for multiple known populations as well as discrete unknown, or not directly observed 

mixtures of populations. The GDM is based on developments that integrate located latent 

class models; multiple classification latent class models; and discrete, multidimensional item 

response models into a common framework. Models of this type express the probability of a 

response vector as a function of parameters that describe the individual item response 

variables in terms of required skills and of indirectly observed (latent) skill profiles of 

respondents. The skills required for solving the items are, as in most diagnostic models, 

represented as a design matrix that is often referred to as a Q-matrix. This Q-matrix consists 

of rows describing, for each item response, what combination of skills is needed to succeed 

or to obtain partial or full credit. The hypothesized Q-matrix is either the result of experts 

rating items of an existing assessment (retrofitting) or comes directly out of the design of the 

assessment instrument, in which it served as a tool to design the items. 

The MGDM takes the GDM and integrates it into the framework of discrete mixture 

distribution models for item response data (see von Davier & Rost, 2006). This increases the 

utility of the GDM by allowing the estimation and testing of models for multiple populations. 

The MGDM allows for complex scale linkages that make assessments comparable across 

populations and makes it possible to test whether items function the same in different 

subpopulations. This can be done with known subpopulations (defined by grade levels, 

cohorts, etc.), as well as with unknown subpopulations that need to be identified by the 

model. In both cases, MGDMs make it possible to determine whether different sets of item-

by-skill parameters and/or different skill distributions have to be assumed for different 

subpopulations. This amounts to a generalized procedure that can be used to test for 

differential item functioning (DIF) on one item or on multiple-response variables using 

multiple-group or mixture models. This procedure enables testing DIF models against models 

that allow additional skills for certain items in order to account for differences between 

subpopulations.  

Key words: Item response theory, diagnostic models, discrete MIRT, mixture distribution 

models, multiple classification latent class analysis, polytomous data 
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What Are Diagnostic Models? 

Rule space methodology (Tatsuoka, 1983) and latent structure models with multiple 

latent classifications (Goodman, 1974a, 1974b; Haberman, 1979; Haertel, 1989; Maris, 1999) 

represent the most well known early attempts at diagnostic modeling. The noisy-input 

deterministic-and (NIDA) model (Junker & Sijtsma, 2001; Maris 1999) is an example of a 

recently discussed diagnostic model. Similarly, the deterministic-input noisy-and (DINA) 

model, which is a constrained (multiple classification), latent class model has been discussed 

by several authors (Haertel, 1989; Junker & Sijtsma; Macready & Dayton, 1977). More 

recently, the unified model (DiBello, Stout, & Roussos, 1995), which lacks identifiability in 

its original parameterization, underwent modification and was recast as the reparameterized 

unified model (RUM; also referred to as the fusion model or the Arpeggio system; Hartz, 

Roussos, & Stout, 2002).  

This paper introduces a class of models for cognitive diagnosis, the general diagnostic 

model (GDM; von Davier, 2005a), in its form for multiple populations and discrete mixtures. 

The GDM is based on developments that integrate (located) latent class models (Formann, 

1985; Lazarsfeld & Henry, 1968); multiple classification latent class models (Maris, 1999); 

and discrete, multidimensional item response theory (MIRT) models (Reckase, 1985) into 

one common framework. von Davier showed that the GDM contains several previous 

approaches in addition to some common IRT models as special cases. Similar to previous 

approaches to diagnostic modeling, GDMs describe the probability of a response vector as a 

function of parameters that describe the individual item response variables in terms of 

required skills and of indirectly observed (latent) skill profiles of respondents. The item-by-

skill requirements are recorded in most diagnostic models as a design matrix that is often 

referred to as a Q-matrix. This Q-matrix consists of rows representing a hypothesis of the 

combination of skills needed to succeed or to obtain partial or full credit in response to a 

particular item. The hypothesized Q-matrix is either the result of experts rating items of an 

existing assessment (retrofitting) or comes directly out of the design of the assessment 

instrument, in which it served as a tool to design the items. In this paper, models referred to 

as the GDM (von Davier, 2005a; von Davier & Yamamoto, 2004a, 2007) will be introduced 

and extended to mixtures and multiple groups, which this paper refers to under the title of the 

mixture general diagnostic model (MGDM). GDMs have been developed to integrate 

multiple-classification, latent class models (Maris, 1999) and located, latent class models 

(Formann, 1985) and may be described as discrete MIRTs (Lord & Novick, 1968; Reckase, 

1985). The MGDM extends the GDM to mixtures of discrete MIRT models (von Davier & 
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Rost, 2006; von Davier & Yamamoto, 2007). Unidimensional mixture IRT models were 

described by Mislevy and Verhelst (1990), Kelderman and Macready (1990), and Rost 

(1990). von Davier and Rost (1995) extended conditional maximum likelihood methods to 

mixture Rasch models for polytomous data, and von Davier and Yamamoto (2004b) 

described the mixture distribution generalized partial credit model (mixture GPCM), an 

extension of the GPCM (Muraki, 1992). 

The extension of the GDM to multiple groups and/or mixtures of populations 

increases the utility of GDMs by making it possible to estimate and test models in such 

settings. For example, the MGDM allows for complex scale linkages to compare assessments 

across populations (compare von Davier & von Davier, 2004), and it enables testing whether 

items are functioning the same in different populations. This can be done with either known 

populations (grades, cohorts, etc.) or with unknown subpopulations that need to be identified 

by the model. In both cases, MGDMs make it possible to test whether different sets of item-

by-skill parameters and/or different skill distributions have to be assumed for different 

subpopulations. This amounts to a generalized procedure that can be used to test for DIF on 

one item or on multiple response variables using multiple-group or mixture models and to test 

such DIF models against models that identify additional skills for certain items in order to 

account for differences between subpopulations.  

Diagnostic models typically assume a multivariate, but discrete, latent variable that 

represents the absence or presence, or more gradual levels, of multiple skills. These skill 

profiles have to be inferred through model assumptions with respect to how the observed data 

relate to the unobserved skill profile. The absence or presence of skills is commonly 

represented by a Bernoulli (0/1) random variable in the model. Given that the number of 

skills represented in the model is larger than in unidimensional models (obviously greater 

than 2, but smaller than 14 skills in most cases), the latent distribution of skill profiles needs 

some specification of the relationship between skills in order to avoid the estimation of up to 

214-1 = 16,383 separate skill-pattern probabilities. The GDM (von Davier, 2005a) allows 

ordinal skill levels and different forms of skill dependencies to be specified so that more 

gradual differences between examinees can be modeled in this framework.  

The following section will introduce the GDM for dichotomous and partial credit data 

and binary as well as ordinal latent skill profiles. Then the MGDM will be introduced. Third, 

scale linkage across multiple groups using GDMs will be discussed. Finally, examples of 

applications of the MGDM in large-scale data analysis will be presented. 
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The General Diagnostic Model Framework 

von Davier and Yamamoto (2004a) developed a GDM framework that uses ideas 

from MIRT and multiple-classification and located latent class models The GDM is suitable 

for polytomous items, for dichotomous items, and for mixed items in one or more test forms. 

It enables the modelling of polytomous skills, mastery/nonmastery skills, and pseudo-

continuous skills. von Davier (2005b) described the partial credit GDM and developed an 

expectation-maximization (EM) algorithm to estimate GDMs. In 2006, this algorithm was 

extended to the estimation of MGDMs.  

General Diagnostic Models for Ordinal Skill Levels 

This section introduces the GDM (developed by von Davier & Yamamoto, 2004a) for 

dichotomous and polytomous data and ordinal skill levels. Diagnostic models can be defined 

by a discrete, multidimensional, latent variable θ ; in the case of the MGDM, the 

multidimensional skill profile 1( )Ka a …a= ,
r

 consists of discrete, user-defined skill levels 

1{ }
kk k kl kLa s … s … s∈ , , , , .  

In the simplest (and most common) case, the skills are dichotomous (i.e., the skills 

will take on only two values {0 1}ka ∈ , ). In this case, the skill levels are interpreted as 

mastery (1)  versus nonmastery (0)  of skill k . Let 1( )Ka aθ = ,...,  be a K -dimensional skill 

profile consisting of K  polytomous skill levels 1ka k K, = ,..., . 

The probability of a response x in the general diagnostic model is given by 

1

1 1

exp ( )
( )

1 exp (i

K
xi xik i ik kk

i ii i m K
yi yik i ik ky k

h q a
P X x q a

h q a

β γ
β γ

β γ

=

= =

⎡ ⎤+ ,⎣ ⎦= , , , = ,
)⎡ ⎤+ + ,⎣ ⎦

∑
∑ ∑

ur r r r
 (1) 

with k -dimensional skill profile 1( )Ka a a= ,...,  and with some necessary restrictions on the 

xikk
γ∑  and the xiβ∑  to identify the model.  

The Q-matrix entries ikq  relate item i  to skill k  and determine whether or not (and to 

what extent) skill k  is required for item i . If skill k  is required for item i , then 0ikq > . If 

skill k  is not required, then 0ikq = . 

The real functions (i ik kh q a, )  are a central building block of the GDM. The function 

ih  maps the skill levels ka  and Q-matrix entries ikq  to the real numbers. In most cases, the 
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same mapping will be adopted for all items, so one can drop the index i . The h  mapping 

defines how the Q-matrix entries and the skill levels interact (von Davier, 2005a; von Davier, 

DiBello, & Yamamoto, 2006). 

Examples of Skill Level Definitions 

Assume that the number of skill levels is 2kS = , and choose skill levels 

{ 1 0 1 0}ka ∈ − . ,+ . , or alternatively { 0 5 0 5}ka ∈ − . ,+ . . Note that these skill levels are a priori 

defined constants and not model parameters. This setting can be easily generalized to 

polytomous, ordinal skill levels with the number of levels being 1kS m= +  and a 

determination of levels such as {(0 ) (1 ) ( )}ka c c … m∈ − , − , , − c  for some constant c . An 

obvious choice is 2c m= / .  

Consider a case with just one dimension, say 1K = , and many levels, say 41kS = , 

with levels of ka  being equally spaced (a common, but not a necessary, choice), say 

{ 4 0 4 0}ka …∈ − . , ,+ . . Here, the GDM mimics a unidimensional IRT model, namely the GPCM 

(Muraki, 1992). As a consequence, this IRT-like version of the GDM requires constraints to 

remove the indeterminacy of the scale, just as IRT models do. 

For GDMs with just a few levels per skill, such constraints may not be needed. In the 

(most) common case of two levels per skill, the range of skill levels is counterbalanced by the 

average of slope parameters. For example, a GDM with { 1 0 1 0}ka ∈ − . ,+ .  produces slope 

parameters that are half as big as a GDM that uses { 0 5 0 5}ka ∈ − . ,+ .  as skill levels. This case 

does not require constraints, as just one proportion determines the mean and variance of a 

binary variable. 

von Davier and Yamamoto (2004a) showed that the GDM already contains a 

compensatory version of the fusion model as well as many common IRT models as special 

cases. The parameters xiβ  may be viewed as item difficulties in the dichotomous case and as 

threshold parameters in the polytomous case, and the xikγ  may be interpreted as slope 

parameters.  

General Diagnostic Models for Partial Credit Data  

For a partial credit version of the GDM, choose ( )i ik k ik kh q a q a, =  with a binary (0/1) 

Q-matrix. The resulting model contains many standard IRT models and their extensions to 

confirmatory MIRT models using Q-matrices. This GDM may be viewed as a multivariate, 
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discrete version of the GPCM. For a response {0 1 2 }ix m∈ , , ,..., , the model based probability 

in this GDM is 

1

1 1

exp
( )

1 expi

K
xi ik ik kk

i ii i m K
yi ik ik ky k

x q a
P X x a q

y q a

β γ
β γ

β γ

⎡ ⎤
⎢ ⎥

=⎢ ⎥⎣ ,⎦
⎡ ⎤
⎢ ⎥

= =⎢ ⎥⎣ ⎦

+
= , , , =

+ +

∑
∑ ∑

ur r r r
 (2) 

with k  attributes (discrete latent traits) 1( )Ka a a= ,...,  and a dichotomous design Q-matrix 

( ) 1 1ik i I k K
q

= .. , = .. . These ka  are discrete scores determined before estimation and can be chosen 

by the user. These scores are used to assign real numbers to the skill levels; for example, 

(0) 1 0a = − .  and (1) 1 0a = + .  may be chosen for dichotomous skills.  

For a vector of item responses, local stochastic independence (LI) is assumed, which 

yields 

1

( ) (
I

i ii i
i

P X x a Q P X x a q )β γ β
=

= , , , = = , , ,∏
ur r

γ
uur r ur r r ur r r r

, 

for a vector of item responses 1( ,..., )Ix x x=
r

, a Q-matrix Q, and a skill profile 1( ,..., )Ka a a=
r

, 

as well as matrix-valued item difficulties β
urur

 and slopes γ
rr

. The marginal probability of a 

response vector is given by 

1

( ) (
I

i ii iaa
i

P X x Q P X x a q )β γ π β
=

= , , = = , , ,∑ ∏rr

ur ruur r ur r ur r r r
γ , 

which is the sum over all skill patterns 1( ,..., )Ka a a=
r

, assuming that the discrete count 

density of the skill distribution is ( )a p A aπ = =r

ur r
. 

De la Torre and Douglas (2004) estimated the dichotomous version of this model, the 

linear logistic model (LLM; Hagenaars, 1993; Maris, 1999), using Markov chain Monte-

Carlo (MCMC) methods. For ordinal skills with ks  levels, the ka  may be defined using 

( )a x x=  for 0 ( 1kx … s= , , − )  or (0) 2 ( 1) 2k ka s … a s sk= − / , , − = / . The parameters of the 

models as given in Equation 2 can be estimated for dichotomous and polytomous data, as 

well as for ordinal skills, using the EM algorithm.  
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An Example of a Simple Diagnostic Model 

How do diagnostic models look? In the following example, there are two 

hypothesized skills, a dichotomous mastery/non-mastery skill 1 { 1 1}T ∈ − ,  and an ordinal 

skill, 2 { 2 1 0 1 2}T ∈ − ,− , , , , with five proficiency levels.  

In addition, there are seven observed variables, referred to as the item response 

variables in psychometric models and models for educational measurement. In this example, 

we assume that a mixed format set of three dichotomous items, 1 3 {0 1}X ... ∈ , , and four 

polytomous items, 4 7 {0 1 2 3X X }... ∈ , , , , is observed. 

The Q-matrix, which relates items to the underlying skill variables, has two columns, 

one each for the two skills T1 and T2, and seven rows. The Q-matrix for this example may 

look like  

1 0
1 1
1 0
0 1
1 1
0 1
0 1

Q

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 , (3) 

which indicates that skill T1 is required for items X1, X2, X3, and X5, but not for the 

remaining items. Skill T2 is required for items X2, X4, X5, X6, and X7, but not for items X1 

and X3. An illustration of Equation 3 is shown in Figure 1. 

 

Figure 1. A graph of the example diagnostic model. 
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Models such as the one depicted in Figure 1 implicitly assume that the same structure 

holds for all examinees in the population from which the observations are sampled. More 

specifically, when using the Q-matrix given in Equation 3 and the model equation given in 

Equation 2, one assumes that this structure holds for all examinees in the population.  

Mixtures of General Diagnostic Models  

The GDM can also be extended also to a mixture-distribution IRT model (von Davier 

& Rost, 2006; see also the corresponding sections below). This allows for the estimation of 

this class of diagnostic model in different latent classes without prespecifying which 

observation belongs to which class and provides the ability to check whether the same kind of 

skill-by-item relationships holds for all the subjects sampled from a particular population. A 

multiple-group version of the GDM can also be specified and estimated using the algorithm 

described below. This allows the estimation of diagnostic models that contain partially 

missing grouping information (similar to the approach described in von Davier & Yamamoto, 

2004b). For diagnostic models involving multiple observed groups or multiple unobserved 

populations (latent classes), parameter constraints can be specified that ensure scale linkages 

across these populations. The MGDM is  

1

1 1

exp ( )
( | )

1 exp (i

K
xig ikg ik kk

i ii i m K
yig ikg ik ky k

x q a
P X x a q g

y q a

β γ θ
β γ

β γ θ

=

= =

⎡ ⎤+⎣ ⎦= , , , , = ,
)⎡ ⎤+ +⎣ ⎦

∑
∑ ∑

ur rur r r r
 

with parameters as defined above and added group index g . This model allows the 

estimation of separate model parameters in the g separate groups. The groups may be defined 

by an observed-group indicator variable; in this case, the above model is the diagnostic model 

equivalent of a multiple-group IRT model (Bock & Zimowski, 1997). If the groups are 

unobserved and have to be inferred during estimation, the above model is a discrete mixture 

diagnostic model (see von Davier & Rost, 2006; von Davier & Yamamoto, 2007). [ 

The marginal probability of a response vector in the MGDM is  

|
1

( ) (
I

i ig i ia gg a
i

, )P X x Q P X x a q gβ γ π π β γ
=

= , , = = , , ,∑ ∑ ∏rr

ur rur r ur ruur r ur r ur r r r
, 

with cube-valued (classes g times items i times categories x) item difficulties,  
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1.. ; 1.. ; 1..( )gik g g i I k Kβ β = = ==
ururur

, 

and cube-valued (classes g times items i times skills k) slope parameters, 

1.. ; 1.. ; 1..( )gik g g i I k Kγ γ = = ==
rrr

, 

and a (0/1) Q-matrix Q. Let gπ denote the relative class or group sizes and |
( | )

a g
P a gπ =r

r
 

denote the class- or group-specific distribution of skill patterns 

Multiple-group and mixture models for item response data may be used to study how 

different two or more populations are by looking at how parameter sets from the model differ 

for different groups or subpopulations. These models are useful to separate samples into 

groups employing different strategies to solve items (Kelderman & Macready, 1990; Rost & 

von Davier, 1993). Researchers have used these models to identify response styles and faking 

(Eid & Zickar, 2007; Rost, Carstensen, & von Davier, 1996, 1999). Rijmen and DeBoeck 

(2003) studied the relationship of mixture IRT models to MIRT (Reckase, 1985). More 

generally, mixture models can be used to test whether a unidimensional IRT model is 

appropriate for the data at hand (Rost & von Davier, 1995). 

In Figure 3, all arrows originating from latent variables T1 and T2 include a gray 

circle that indicates the population dependency of the item parameters. Originating from a 

new variable (Group?Class) are the arrows that target these ‘population dependency’ 

indicators. In addition, the distribution of latent variables T1 and T2 are on the receptive end 

of arrows originating from the group indicator variable (Group?Class), indicating that the 

latent trait distributions for T1 and T2 may also vary across populations.  

Instead of separate graphs for separable populations, groups, or classes, the 

dependency of the model parameters on the group indicator can be illustrated by adding some 

arrows to the diagnostic model graph in Figure 1. Figure 3 presents the multiple-group 

variant in this manner. In this figure, the circles in shades of gray targeted by the 

Group?Class population indicator variable represent the dependency of item parameters on 

the population. 

Figure 2 illustrates a diagnostic model in multiple populations. This figure indicates 

that the item parameters and skill distributions are modelled separately in the different 

instances of the grouping variable g by providing a separate graph for each group. 

a
r

 in group g. 
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Figure 2. A graph of a multiple-population or mixture diagnostic model.
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Figure 3. An alternative graph of a multiple-group or mixture diagnostic model. 

Scale Linkages Across Mixture/Multiple-Group Diagnostic Models  

In the unconstrained case, all item parameters may differ across the subpopulations in 

an MGDM. This is not always desirable because comparisons across groups require some 

common interpretation of the parameters involved. This is usually interpreted as meaning the 

parameters have to be on the same IRT scale. Scale linkage in IRT models enables the 

comparison of ability estimates across different populations (see, e.g., von Davier & von 

Davier, 2004; Kolen & Brennan, 1995). The scale indeterminacy of IRT models makes these 

models invariant under appropriate linear transformations of the parameters involved so that 

parameter estimates of common items can be transformed (or constrained) to match certain 

objectives. The objective to be met is either matching moments of the item parameters shared 

across forms or populations or setting equal the common items’ parameters across forms or 

populations (von Davier & von Davier). This objective can be accomplished by employing 

constrained maximum likelihood estimation or by maximizing a modified likelihood that 

adds a penalty term or a Lagrange multiplier (Aitchison & Silvey, 1958). 

In MGDMs, comparisons across subpopulations are made possible in the same way 

items are constrained in IRT scale linkages. The most stringent comparisons are made 

possible by assuming that the same item parameters hold for a set of common items across 

subpopulations. In a graph, arrows originating from the group indicator mean that the 
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targeted parameter depends on the group indicator, while the absence of arrows mean that the 

targeted parameter is independent of the grouping indicator g  (i.e., the absence of arrows 

indicates that constraints on item parameters are to be equal across subpopulations).  

Figure 4 illustrates this sort of linkage in MGDMs. The items without a direct arrow 

originating from the ellipse labelled group are items X2, X4, and X5; these items have the 

same parameters across subpopulations. Items X1, X3, X6, and X7 have group-dependent 

parameters, which are indicated by arrows originating from the group ellipse. The same holds 

for the skill variables 1θ  and 2θ  as well as their covariance. The distribution of these 

variables and their relationship do not vary across subpopulations, which is indicated by an 

arrow originating from the group ellipse. 
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Figure 4. A mixture/multiple-group general diagnostic model with equality constraints.  

The mdltm software (von Davier, 2005b) allows for the definition of equality 

constraints across pairs of items or multiple items in different subpopulations, as well as 

constraints that affect only difficulties or slopes in MGDMs. In addition, parameter 

constraints can be employed that fix item parameters to certain values, for example, to 

parameter values from previous calibrations. Other scale linkages such as the mean-variance 

methods used in unidimensional IRT (Loyd & Hoover, 1980; Marco, 1977) are also available 

for estimating linked GDMs in several populations by invoking corresponding key words in 

the mdltm scripting language. 
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In addition to scale-linkage methods that mirror traditional methods used in IRT, 

parameter constraints for MGDMs can be used to develop new methods of scale linkage and 

even new models within the class of MGDMs as outlined next. 

Different Q-Matrices in Different Populations  

The same skill-by-item structure implied by the Q-matrix might not be appropriate for 

all subpopulations. Imagine that different student groups receive test preparation from 

different vendors, so that some students are trained to use additional methods to make sure 

their responses are correct. In this case, different Q-matrices might hold in different 

subpopulations since some student groups are trained to use this additional method, and may 

do so to with varying success. The other students most likely do not know about this method, 

since they have not been trained in using it.  

In the framework of MGMs, this can be implemented as follows using the methods of 

parameter constraints offered by mdltm: Define a super Q-matrix with entries of 1 if a skill is 

needed for an item in at least one subpopulation and set the Q-matrix to 0 only if the skill is 

not required for an item in all subpopulations. Then fix slope parameters to equal 0 for skills 

that are not needed in certain subpopulations for certain items. This ensures that no slope is 

estimated in these subpopulations as the slope has been set to equal 0. In these 

subpopulations, the corresponding skill (with the slope equalling 0 for certain items) does not 

contribute to items constrained in that way.  

In the next step, the fit of these constrained models with unique Q-matrices across 

subpopulations may be compared to models that do not impose such constraints. This will 

provide evidence on how appropriate are the assumptions that lead to a specific constrained 

model.  

Strongest Form of Linkage Across Multiple Populations 

Another important case of a constrained model for multiple populations is a multiple-

group model where all (common) items are assumed to have the same parameters in all 

subpopulations. This means that while each common item may have a parameter that differs 

from other items in the same population, the common item is assumed to have the same 

parameters across populations (i.e., different administrations, different cohorts). Only the 

ability distributions differ across subpopulations. For instance, the ability distribution in the 

example is ( 1 2 | )P gθ θ, , where g stands for the group or population under consideration. 
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This form of the model measures identical skills, allowing for different skill distributions 

across subpopulations. 

The rationale for a multiple-group model that includes just one set of item parameters 

is the assumption of measurement invariance, in the sense that the item’s conditional 

response probability depends on a unidimensional, person-specific variable only. Given the 

value of this variable (e.g., the skill, ability, or proficiency of an examinee) and knowing the 

item characteristics or parameters, the response probability is determined without respect to 

which group the examinee belongs. Figure 5 illustrates this form of equality constraint across 

subpopulations; note that the arrows originating from the group ellipse target the skill 

distribution variables only, and no arrow targets the gray bubbles, which represent the item 

characteristics.  
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Figure 5. Strongest form of linkage across multiple populations. 

This measurement-invariant MGDM assumes that item characteristics are exactly the 

same across groups, while allowing skill distribution differences across groups. Other models 

are easily obtained by varying the types of constraints presented in this paper. 

Applications  

GDMs have been applied in research studies conducted for different large scale 

assessment programs. This section gives a brief summary of three applications to data from 

such programs. 
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General Diagnostic Models and English Language Testing  

von Davier (2005a) analyzed TOEFL® iBT pilot data with common IRT models and 

GDMs using expert-generated Q-matrices. It was hypothesized that four skills each could be 

identified in the listening and in the reading sections of the TOEFL iBT pilot data. In contrast 

to this expectation, it was found that a unidimensional mixed two-parameter logistic 

(2PL)/GPCM IRT model fits the data as well as the GDM with four dichotomous 

mastery/nonmastery skills.  

For reasons of parsimony, von Davier (2005a) concluded that the 2PL/GPCM was to 

be favored for both the listening and the reading section. Figure 6 shows the relation between 

the 2PL ability estimate and the skill-mastery probabilities for the listening section data of 

this study. Figure 6 shows very similar results for the two forms of the TOEFL iBT, Form A 

and Form B, used in von Davier’s study. It is evident that all four skills have a rather strong 

relationship to the overall 2PL parameter estimate. The probability of skill mastery increases 

in a very systematic fashion with increasing 2PL parameter. The width of the four S-shaped 

plots is mainly a function of reliability of the skill-mastery probability. If the skill is 

measured by many items, the S-shaped curve is narrower; if few items are used to measure 

the skill, the S-shape is a little wider. 
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Figure 6. English language general diagnostic model, listening Forms A and B.  

In additional analyses, mdltm was used to test a unidimensional IRT model, a two-

dimensional IRT model employing the 2PL/GPCM, and a GDM. Each model contained all 

eight skills (four for reading, four for listening) in one Q-matrix and was composed of the 

joint listening and reading parts of the TOEFL iBT pilot data. It was found that the two-
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dimensional discrete IRT model estimated in the GDM framework provides the best data 

description in terms of balancing parsimony and model-data fit. 

MGDMs for Matrix Samples of Item Responses 

Xu and von Davier (2006) used a multiple-group GDM with large-scale survey data. 

In their example, gender and race/ethnicity were used as grouping variables. Xu and von 

Davier used data from the 2002 12th-grade National Assessment of Educational Progress 

(NAEP; for the history of the national assessment, see Jones & Olkin, 2004) in reading and 

mathematics. The reading data were modeled using MGDMs with up to three dimensions, 

and the mathematics data were modeled using MGDMs with up to seven dimensions (four 

content domains plus three complexity levels). because data from large-scale surveys are 

extremely sparse in nature, the authors performed a parameter-recovery study based on 

estimating GDMs in sparse samples of item responses. 

The results are reported in detail in Xu and von Davier (2006). The parameter-

recovery results under different levels of sparseness of data support the feasibility of 

estimating GDMs under such conditions. Table 1 presents results of this study, making use of 

the average bias and the root mean square error obtained under different degrees of data 

sparseness. 

Table 1 

Bias and RMSE of GDM Item Difficulties and Slope Parameter and Skill Distribution 

Probability Estimates 

  Percentage of missing data  

 Measure 10% 25% 50%  

Item parameters Average bias 0.001 0.002 0.005  

 Average RMSE 0.071 0.083 0.119  

Skill distribution Average bias 0.000 0.000 0.000  

 Average RMSE 0.004 0.004 0.007  

The results reported by Xu and von Davier (2006) on the NAEP data showed that a 

multidimensional MGDM (both single-group and multiple-group versions of the GDM were 

tested) was found to fit the reading data consistently better than a unidimensional IRT model. 

However, a unidimensional IRT model fit the math data better than a three-, four-, or even a 

seven-dimensional GDM. This result has since been replicated using other larger NAEP data 
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sets and can be explained by the fact that the reading domains correlate less than do the math 

subscales when defined by either content or complexity factors.  

Mixture IRT, General Diagnostic, and Latent Class Models  

Huang and von Davier (2006) used background data from an international large-scale 

assessment of adult literacy. Their results were based on data from approximately 47,000 

adults assessed with cognitive adult literacy scales and background questionnaires. The 

sample contained data from seven countries. 

The goal of this study was to develop indicator variables using latent class models, 

GDMs, or common IRT models. The purpose of these derived indicator variables was to 

provide more reliable background variables for secondary data analysis by aggregating 

response data.  

In this study, the three models listed above fit the relatively short scales equally. Measures 

of model-data fit made it evident that a distinction between discrete and continuous latent 

variables was difficult to make if only a few observed variables were used.  

Conclusions and Outlook 

This paper introduces MGDMs and presents evidence for the utility of this class of 

models. So far, examples of successful applications of the GDM and its mixture 

generalizations come from data analyses aimed at identifying the necessary level of 

complexity needed to fit observed responses and exploring multiple-group versus single-

group models as examples of scale linkages across multiple populations. 

Obvious next steps include the introduction of covariates for predicting skill 

distributions. One common way to do this is to extend the GDM using a latent regression 

model—a conditioning model in the language of NAEP and other large-scale survey 

assessments (von Davier, Sinharay, Oranje, & Beaton, 2006). Figure 7 illustrates this model 

extension with the example used in previous figures.  

Xu and von Davier (2006) developed parametric skill-distribution models for GDMs. 

These parametric families of discrete skill distributions enable the skill space to be modeled 

more parsimoniously, so that models with a larger skill count are still estimable even when 

the sample sizes in the different subpopulations are not large. These extensions have been 

implemented in mdltm and can be estimated with customary maximum likelihood methods. 

These developments are currently being studied using a variety of large-scale data sets. 
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Figure 7. Extending the GDM using a latent regression model. 

However, even with computationally efficient methods and fast computers that enable 

complex models to be estimated in a reasonable time, the question of model complexity 

remains important. For this reason, research on model-data fit and the balance between 

parsimony of models is imperative (see Haberman & von Davier, 2006). 

Mixture general diagnostic models are a useful tool for educational measurement 

research. The potential of these models for practical large-scale data analysis lies in the fact 

that models of different complexity can be specified within a common framework, estimated 

using standard maximum likelihood methods, and directly compared in terms of their 

predictive power. 
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